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Abstract

The recent surge in open-source Large Language Models (LLMs), such as LLaMA,
Falcon, and Mistral, provides diverse options for AI practitioners and researchers.
However, most LLMs have only released partial artifacts, such as the final model
weights or inference code, and technical reports increasingly limit their scope to
high-level design choices and surface statistics. These choices hinder progress in
the field by degrading transparency into the training of LLMs and forcing teams to
rediscover many details in the training process. We present LLM360, an initiative
to fully open-source LLMs, which advocates for all training code and data, model
checkpoints, and intermediate results to be made available to the community. The
goal of LLM360 is to support open and collaborative AI research by making the
end-to-end LLM training process transparent and reproducible by everyone. As a
first step of LLM360, we release two 7B parameter LLMs pre-trained from scratch,
AMBER and CRYSTALCODER, including their training code, data, intermediate
checkpoints, and analyses (at llm360.ai). We are committed to continually
pushing the boundaries of LLMs through this open-source effort. More large-scale
and stronger models are underway and will be released in the future.

A technical report of the LLM 360 project.

https://www.llm360.ai/


1 Introduction

The landscape of Large Language Models (LLMs) has experienced a remarkable transformation in
the past one year, witnessing an unprecedented surge in both the popularity and capabilities of these
models. At the forefront of this evolution are proprietary LLMs such as GPT-4 [1] and Claude [2],
which have captured the attention of the AI community due to their power and versatility. At the same
time, the recent emergence of openly accessible yet highly capable LLMs such as LLaMA [3, 4],
Falcon [5], and Mistral [6] allow researchers and practitioners at large to easily obtain, customize,
and deploy LLMs in more diverse environments and for more diverse use cases.

Despite the growing influence and accessibility of open-source LLMs, a notable trend has been to
restrict visibility and access to their training, fine-tuning, and evaluation processes, including crucial
components such as their training code and data. This practice limits the ability of the broader AI
research community to study, replicate, and innovate upon advanced LLMs. A more transparent
approach to sharing not just the final model but also training details and artifacts is crucial for
fostering a more inclusive and collaborative research environment.

Motivated by the above, we note the following specific challenges in LLM research today.

Data Provenance. Understanding the origins and characteristics of the training data is crucial for
assessing the reliability and biases inherent in LLMs. A lack of transparency about data sources
and composition hinders the ability to identify and mitigate biases which can be perpetuated in
model outputs. Simultaneously, data leakage—where training datasets overlap with benchmark
datasets—can lead to misleading performance metrics that obscure a model’s general effectiveness
(studied in [7, 8]). These issues highlight the need for clear documentation of data origins and usage
in LLM development.

Reproducibility. Even with full disclosure of data sources, the lack of access to complete training
code, configuration details, and specific datasets can make it challenging to reproduce the results
reported in studies. For example, although the training data mixtures are disclosed by LLaMA [3],
the data processing and training code are not released. Yet, LLMs known to be trained using an open
reproduction of LLaMA’s data (e.g., RedPajama [9, 10]) still do not fully reproduce its benchmark
evaluations [11], indicating that additional data processing or training procedures may be necessary.

Open Collaboration. The practice of only releasing final model weights not only leads to redundant
efforts but also poses uniques challenges in conducting certain research. For instance, research
into the emergent abilities of LLMs [12, 13] or the investigation of how different training data
affects model behavior [14, 15] becomes more challenging without access to intermediate training
checkpoints. Researchers are often forced to either work with the final model, which offers limited
insights into its developmental nuances, or start from scratch, leading to unnecessary duplication of
work and expenditure of compute.

LLM3601 aims to address the issues above through a comprehensive open-source LLM effort.
Models in LLM360 are published with all training and model details (e.g., hyperparameters, sched-
ules, architecture, and designs), all intermediate model checkpoints saved during training, and full
disclosure of the exact pre-training data used.

Our contributions are:

• We outline the LLM360 framework, focusing on its design principles and the rationale for
fully open-sourcing LLMs. We detail the components of the framework, including datasets,
code and configurations, model checkpoints, and training metrics. This framework provides
a target for transparency that all present and future LLM360 models strive to meet.

• We pretrain two new LLMs from scratch and release them under the LLM360 framework.
AMBER is a 7B English LLM pretrained on 1.3T tokens. CRYSTALCODER is a 7B English
and code LLM pretrained on 1.4T tokens. We discuss the development details, preliminary
evaluations, observations, and lessons we learned from AMBER and CRYSTALCODER.

• We release all training code, pretraining data, model checkpoints, and evaluation metrics
collected during pretraining for both AMBER and CRYSTALCODER. Notably, AMBER is
released with 360 model checkpoints saved during training, and CRYSTALCODER with 143.

1The name LLM360 signifies open-sourcing LLMs from all angles, and that 360 data points (i.e., checkpoints,
data chunks, evaluation results) are released for many of our models.
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We aim to make a continuous commitment to fully open-source LLMs by releasing multiple LLMs at
various scales. As the first step, in this technical report, we discuss AMBER and CRYSTALCODER,
the first open-source LLMs in the LLM360 series. In the future, we plan to release more pre-trained
LLMs that are larger in scale, exhibit better performance, and focus on various domains.

The rest of this report is organized as follows. In §2, we discuss related works and the predecessors
that inspired LLM360. In §3, we provide a description of the LLM360 framework and the release
artifacts that fall into its purview. In §4, we discuss the first two LLMs released under LLM360,
AMBER (§4.1) and CRYSTALCODER (§4.1.5), and preliminary analyses of both. §6 concludes.

2 Related Work

The closest project to LLM360 is Pythia, which also aims at full reproducibility of LLMs [16].
The Pythia project provided 154 checkpoints for model sizes from 70M to 12B to better support
research on the scaling behavior and learning dynamics of LLMs. While Pythia is a pioneering
work, it no longer reflects many recent LLM practices, such as training over trillion-token datasets
or training on language and code in different stages. On the other hand, LLM360 defines a release
framework prioritizing transparency and reproducibility under which up-to-date models can continue
to be released, and our 7B AMBER model surpasses the 12B Pythia model in public benchmarks [17].
Overall, Pythia set an early precedent for transparency and reproducibility of LLMs that we aim to
perpetuate and expand in LLM360 to modern LLM pretraining regimes.

LLM Release Pretraining Checkpoints Pretraining Dataset Tokens
Name Date Code Config Model Optim Data Mix Ordering Available (T )

GPT-J [18] May’21 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.40

GPT-NeoX [19] Apr’22 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.40

OPT [20] May’22 ✓ ✓ ✓ ✓ 0.18

BLOOM [21] Nov’22 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.34

Pythia [16] Feb’23 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.30

LLaMA [3] Feb’23 ✓ ✓ 1.0

OpenLLaMA [11] May’23 ✓ ✓ ✓ ✓ ✓ 1.0

INCITE [10] May’23 ✓ ✓ ✓ ✓ ✓ 1.0

MPT [22] May’23 ✓ ✓ ✓ 1.0

Falcon [23] May’23 ✓ ✓ 1.5

Llama 2 [4] Jul’23 ✓ 2.0

Qwen [24] Aug’23 ✓ 2.4

Mistral [6] Sep’23 ?

Yi [25] Nov’23 ?

AMBER Dec’23 ✓ ✓ ✓ * ✓ ✓ ✓ 1.3

CRYSTALCODER Dec’23 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 1.4

Table 1: Summary of notable open-source LLMs. We note a trend of progressively less disclosure of important
pretraining details over time: (1) availability of pretraining code, (2) disclosure of training configurations and
hyperparameters, (3) intermediate checkpoints of model weights, (4) intermediate checkpoints of optimizer
states, (5) disclosure of data mixture and sources, (6) reproducibility of pretraining data sequence, and (7)
availability (or reconstruction scripts) of the pretraining data.
* Amber optimizer states are lost due to errors in early implementation.

In general, open-source LLMs span a wide spectrum of transparency and reproducibility when it
comes to their release artifacts. Many recent LLMs only release their final model architecture and
weights, keeping their data sources and most training details undisclosed [4, 24, 6, 25]. Some are
trained on publicly available datasets [18, 19, 21, 16, 11, 10, 26], whereas others disclosed their data
mixtures but do not make training-ready data available to the public [20, 3, 22, 23]. Several LLMs
of note have been released with substantially more transparent details and artifacts. For example,
EleutherAI models such as GPT-J [18] and GPT-NeoX [27] included training code, datasets, and
up to 150 intermediate model checkpoints. The value of the open-source GPT-NeoX training code
was demonstrated by its use in subsequent LLM pretraining by others in the community [10, 22].
INCITE [10], MPT [22], and OpenLLaMA [11] were released with training code and training dataset,
with RedPajama also releasing 10 intermediate model checkpoints.
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Overall, we observe a trend that more recent and capable LLMs are becoming more closed in their
release artifacts. In contrast, the goal of LLM360 is to release modern and high-quality models while
maintaining a high degree of release transparency.

3 The LLM360 Framework

In this section we present LLM360, a framework for releasing LLMs that promotes open-source
transparency, reproducibility, data/model provenance, and collaborative research. LLM360 provides
guidance and recommendations for release artifacts that are collected during LLM pre-training and
subsequently made publicly available to the community.

As part of the launch of LLM360, we also release two new pre-trained LLMs, which we hope
will foster immediate interest and collaboration in the open-source research community. First,
AMBER, an English language LLM with 6.7B parameters trained on 1.25 trillion tokens. Second,
CRYSTALCODER, an English and code LLM, also with 6.7B parameters, trained on 1.4 trillion tokens.
Details on AMBER and CRYSTALCODER are reported in §4.

Training Dataset and Data Processing Code The pretraining dataset is the main ingredient of
an LLM and significantly impacts its capabilities. Thus, it is important for users and adopters to
have visibility into pretraining data to assess potential behavior issues and biases. For example,
recent concerns about benchmark data leakage into LLM pretraining is much easier to study when
pretraining datasets are available for exploration [8, 7].

Furthermore, visible pretraining data improves the extensibility of LLMs in later fine-tuning and
domain adaptation. Recent work suggests that training on repeated data disproportionately degrades
final model performance [28]. Given the breadth of data modern pretraining is performed on, visibility
into the original pretraining data is essential for avoiding repeated data in downstream fine-tuning or
continued pretraining on specialized domains.

LLM360 advocates for the public release of the data LLMs are pretrained on. When applicable,
details about data filtering, processing, and training order should be released as well. Doing so equips
the community with better tools to assess the capabilities and risks of LLMs and to reproduce and
build upon existing LLMs for future use cases.

Figure 1: Artifacts relea-
sed by the LLM360
project include data chu-
nks, model checkpoints,
and metrics, at over 360
time stamps of training
(and code for all parts).

Training Code, Hyperparameters, and Configurations These code
and settings have a significant impact on the performance and quality
of LLM training, and are not always publicly disclosed. For example,
we observed that a carefully balanced hybrid data-model-pipeline (3D)
parallelism [29] can outperform the standard FSDP in PyTorch by up to
15% on our Nvidia A100 clusters. Another example we observed is that
it is essential to keep the inverse frequency matrix in RoPE positional
embedding in FP32 [30], which aligns with the observation in Qwen [24].

In LLM360, we open-source all our LLM pre-training frameworks,
hyperparameters, as well as the configurations. These include the entire
training source code, training parameters such as learning rates and batch
sizes, and system configurations such as parallelism dimensions.

Model Checkpoints It is typical during LLM training to periodically
save checkpoints of the model to persistent storage. These checkpoints
are not only crucial for recovery from faults during training, but also
useful in post-training research such as studying different data and/or
hyperparameter schedules, or reproducing infrequently-occurring training
faults (e.g., loss spikes, NaN results). Recent research on model quanti-
zation and compression heavily relies on analysis of model weights and
the dynamics during training [31, 32].

LLM360 models are published with all intermediate checkpoints saved
during their training, including model weights and optimizer states (when
applicable, e.g., Adam [33] moving averages). These checkpoints enable continued training from
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a range of starting points without training from scratch, making it easier to study and reproduce a
wider variety of effects during training.

Metrics LLMs undergo training over weeks to months, and the trends and evolution patterns over
this training period can offer valuable information. However, access to detailed logs and intermediate
metrics for LLMs is currently limited to groups involved in pretraining, hindering a comprehensive
study of LLMs. These statistics often contain key insights that cannot be directly derived otherwise,
and even a simple analysis on the metrics, such as computing metric variances or norms, can reveal
significant findings. For instance, the team behind GLM proposed an effective gradient shrinking
algorithm for handling loss spikes and NaN losses by analyzing gradient norm behaviors [34].

Our aim with LLM360 is to alleviate this problem by completely open sourcing the logs and
metrics we collect. This includes system statistics (e.g., GPU workload), training logs (e.g., loss,
gradient norm), and evaluation metrics (e.g., perplexity, downstream tasks). Access to these logs may
facilitate a deeper understanding of the whole training process, including how LLMs evolve during
various training scenarios. We provide easy access to the figures by sharing directly on the LLM360
Weights & Biases page2. A few example metrics include downstream evaluation results, training loss,
gradient norm, etc.

In §4.3, we introduce how one can make use of the metrics, and illustrate an experiment tracking the
memorization behavior of a model throughout training. The metrics are released in coordination with
the data chunks and checkpoints for researchers to easily find their correspondence. Furthermore, we
provide open access to the analysis and evaluation code used to foster reproducibility. The code and
all the metrics can be found at an LLM360 repository: Analysis360.

4 Initial Model Release

4.1 Amber

Figure 2: AMBER is a 7B
parameter English open-
source LLM.

In this section, we introduce AMBER, the first model in the LLM360
family, as well as the finetuned models AMBERCHAT and AMBERSAFE.

4.1.1 Details on Data Preparation and Model Architectures

Below we review the details of our pre-training dataset, including data
preprocessing, format, data mixing ratios, along with architectural details
of our LLM model and specific pre-training hyperparameters. The exact
setup of AMBER can be found in the LLM360 code base.

Details on our pre-training dataset We conduct the data preparation
process similar to OpenLLaMA3. Specifically, our pretraining data is a
mixture of RefinedWeb, StarCoder, and RedPajama-v1. A slight difference with OpenLLaMA-v2 is
our inclusion of C4, since we do not intend to introduce dupliciated documents after the deduplication
process conducted by RefinedWeb. We simply put together all the original aforementioned datasets
(without any further cleaning, filtering, or sub-sampling), conduct a global permutation, and partition
them evenly into 360 data chunks. In total, we have 1.26 Trillion tokens. Table 2 presents the
combination.

The LLM architecture We used the exact same model architecture as LLaMA 7B4. Detailed LLM
architectural configurations are summarized in Table 3, incorporating rotary positional embeddings
(RoPE) at each layer of the network [30].

Pre-training procedure and hyperparameters We followed the pre-training hyperparameters
from LLaMA as closely as possible [3]. AMBER is trained using the AdamW optimizer with the
following hyperparameters: β1 = 0.9, β2 = 0.95. The initial learning rate is set to η = 3e−4,
following a cosine learning rate schedule that decreases to a final rate of η = 3e−5. We apply a

2https://wandb.ai/llm360/projects
3https://github.com/openlm-research/open_llama#dataset-and-training
4The architectural details are directly fetched from https://huggingface.co/huggyllama/llama-7b
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weight decay of 0.1 and use gradient clipping at 1.0. The model is warmed up over 2, 000 steps.
Differing from the LLaMA setup, based on our hardware setting with 224 GPUs, we use a pre-training
batch size of 2, 240 (224× 10) instead of 2, 048.

Subset Tokens (Billion)

Arxiv 30.00

Book 28.86

C4 197.67

Refined-Web 665.01

StarCoder 291.92

StackExchange 21.75

Wikipedia 23.90

Total 1259.13

Table 2: Data mix in AMBER pre-training.

Hyperparameter Value

Number Parameters 6.7B

Hidden Size 4096

Intermediate Size (in MLPs) 11008

Number of Attention Heads 32

Number of Hidden Layers 32

RMSNorm ϵ 1e−6

Max Seq Length 2048

Vocab Size 32000

Table 3: LLM architecture & hyperparameters.

4.1.2 Details on the Pre-training Infrastructure
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Figure 3: The training loss of AMBER over all
model checkpoints.

AMBER is trained on an in-house GPU cluster.

The GPU cluster The GPU cluster consists
of 56 DGX A100 nodes, each equipped with
4× 80GB A100 GPUs. Each GPU is connected
with 4 links NVLink. Cross node connection set-
ting is 2 port 200 Gb/sec (4× HDR) InfiniBand.
The throughput we manage to achieve with our
distributed training framework is around 582.4k
tokens per second.

The pretraining framework Our pretraining
framework is lit-llama5 developed based on Py-
Torch Lightning. We used mixed-precision dur-
ing pre-training with BF16 for activations and gradients and FP32 for model weights [35].

4.1.3 Finetuned AMBER models

We also release a few finetuned versions of AMBER, namely AMBERCHAT and AMBERSAFE.
AMBERCHAT is trained on the evolved instruct training data as used by WizardLM [36]. We use
FastChat [37] to finetune the model for 3 epochs on 8 A100s (80G) distributed by FSDP [38],
the learning rate is 2 × 10−5, gradient accumulation steps is 16, warmup ratio is 0.04. We also
finetune an aligned version of the model: AMBERSAFE, by conducting Direct Parameter Optimization
(DPO) [39]. AMBERSAFE is trained on ShareGPT 90K6, and further optimized on the SafeRLHF
dataset [40]. We set β to 0.1, gradient accumulation steps to 4, and the learning rate to 5× 10−7.

4.1.4 Results and Analysis

Benchmark Results We use four benchmark datasets in the Open LLM Leaderboard7 as our
evaluation on different aspects, i.e., ARC, HellaSwag, MMLU, and TruthfulQA, following the
leaderboard settings. We run the evaluation on all 360 checkpoints, to observe the model ability
across the pretraining process. As shown in Figure 4, we can see that the HellaSwag and ARC

5https://github.com/Lightning-AI/lit-llama
6The base model for this is checkpoint 355 instead of the last checkpoint
7https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

6

https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k
https://huggingface.co/datasets/icybee/share_gpt_90k_v1
https://github.com/Lightning-AI/lit-llama
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard


evaluation scores monotonically increase during pre-training, while the TruthfulQA score seems
to decrease as the training proceeds. Another interesting trend is observed in the MMLU progress,
where the score decreases in the initial stage of pretraining and then starts to increase.
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Figure 4: Results for AMBER on the Open LLM leaderboard metrics.

In Table 4, we compare the final model performance of AMBER to a set of models trained around
similar time, namely OpenLLaMA, RedPajama-INCITE, Falcon, MPT. Many are inspired by the
design of LLaMA. We found that AMBER is relatively competitive in scores such as MMLU, but
its performance on ARC is behind the curve. We also find that our finetuned AMBER models
are relatively strong, even compared with other similar models. In our early study, we note that
AMBERCHAT simply trained on ShareGPT 90K also demonstrates much higher performance than
our base model, which is slightly different from the trends shown on other models in the table. We
leave further investigation of this to future work.

The LLMs ARC HellaSwag MMLU TruthfulQA Avg.

LLaMA2-7B-chat 52.9 78.55 48.32 45.57 56.34

LLaMA2-7B 53.07 77.74 43.8 38.98 53.39

AMBERSAFE 45.22 74.14 37.78 55.44 53.15

LLaMA-7B 50.94 77.8 35.67 34.34 49.69

AMBERCHAT 42.83 74.03 38.88 40.72 49.12

OpenLLaMA-v2-7B 43.69 72.2 41.29 35.54 48.18

MPT 47.7 77.57 30.8 33.44 47.38

Falcon-7B 47.87 78.13 27.79 34.26 47.01

RedPajama-INCITE-7B-Instruct 44.11 72.02 37.61 33.96 46.93

Falcon-7B-instruct 46.16 70.85 25.66 44.07 46.69

OpenLLaMA-v1-7B 47.01 71.98 30.49 34.85 46.08

AMBER 41.89 74.14 30.76 34.00 45.20

RedPajama-INCITE-7B-Base 46.25 71.63 27.68 33.03 44.65

RedPajama-INCITE-7B-Chat 42.06 70.82 26.94 36.09 43.98

Table 4: Open LLM leaderboard comparisons for a few LLMs developed around the same time.
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4.1.5 Issues Encountered During Pre-training

In this section, we discuss several major issues encountered during the pre-training process of AMBER.
These issues could potentially impact our final model performance. We have addressed most of these
issues in subsequent LLM pre-training efforts.

NaN loss on a few data chunks During the pre-training procedure, we encountered NaN loss in
four out of 360 data chunks. Whenever we faced this issue, we tentatively skipped the entire data
chunk. Initially our plan was to train on these four data chunks in later stage of the training, however,
we found that these data chunks tend to cause NaN loss regardless of the position of training. We end
up finishing our training by taking the first four chunks from the training sequence to complete our
learning rate schedule.

Missing optimizer states In our pre-training framework, we did not manage to save the optimizer
states; we only saved model checkpoints for each data chunk. This oversight might be the cause of
the NaN loss issue observed in the four data chunks, as mentioned earlier. Each time we resumed
pre-training from a previous model checkpoint, the optimizer state in the AdamW optimizer was
re-initialized. This re-initialization could potentially affect model training stability.

Discrepancies on the precision of checkpoints In the initial phase of pre-training, our codebase
had an issue where model checkpoints were saved with BF16 precision, despite our mixed precision
training process maintaining model weights at FP32. This issue was later identified and rectified
by our team, ensuring that all subsequent model checkpoints were saved with FP32 precision. We
anticipate that the initial BF16 model checkpoints may have contributed to some degree of accuracy
drop in the model.

4.2 CRYSTALCODER

Figure 5: CRYSTAL-
CODER is a 7B param-
eter English and code
open-source LLM.

This section provides a summary of the dataset and the model architecture
utilized in CRYSTALCODER. For a detailed evaluation of results on bench-
marks and a comparison with previous works on specific benchmarks, we
refer readers to our future reports.

3-Stage Pre-training Dataset The pre-training dataset employed in
CRYSTALCODER is a blend of SlimPajama [41] and StarCoder data [42]
with around 1382B tokens in total. Diverging from previous approaches
such as Code Llama [43], which strictly sequentially trains on English and
coding data, we adopt a more gradual approach by seamlessly combining
and training on both types of data, to provide a balance between code and
general ability. The training process is divided into three stages. In the first
stage, we train on half of the SlimPajama data, totaling around 345 billion
tokens. Moving to the second stage, the remaining half of the SlimPajama
data is utilized, along with two epochs of StarCoder data, resulting in approximately 927 billion
tokens. In the third stage, we train on Python and web-related data, encompassing HTML, JavaScript,
and CSS subsets from StarCoder, totaling 100 billion tokens. Additionally, we sample 10 billion
tokens from the SlimPajama dataset in this stage. The preprocessed data and data mixing scripts are
released in the Huggingface and Github repository of LLM360.

Model Architecture CRYSTALCODER employs a model architecture closely resembling LLaMA
7B, with the incorporation of maximal update parameterization (muP) [44]. In addition to this specific
parameterization, we have made several slight modifications, the application of RoPE restricted to
the first 25% of hidden dimensions (similar to the implementation of GPT-NeoX [27]), and the use
of a sequence length of 2048 with an embedding dimension of 32032. In addition, we simply use
LayerNorm instead of RMSNorm since the CG-1 architecture supports efficient computation for
vanilla LayerNorm.

Compute Infrastructure CRYSTALCODER is trained on the Cerebras Condor Galaxy 1 (CG-1), a
4 exaFLOPS, 54 million core, 64-node cloud AI supercomputer8.

8https://www.cerebras.net/condor-galaxy-1
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Figure 6: Results for CRYSTALCODER on the Open LLM leaderboard metrics. Grey vertical dashed
lines denote the transition between the three stages of training.

Open LLM Leaderboard and Code Evaluations We also benchmark this model on the four
benchmark datasets in the Open LLM Leaderboard (similar to AMBER), as well as coding benchmark
datasets, including HumanEval pass@1, and MBPP pass@1. We show results in Figure 6.

The LLMs Language Tasks Code Tasks Avg.
ARC HellaSwag MMLU TruthfulQA Avg. HumanEval MBPP Avg.

Mistral-7B 59.98 83.31 64.16 42.15 63.40 29.12 38.78 33.95 48.68

CRYSTALCODER (7B) 47.01 71.97 48.78 35.91 50.92 28.38 36.38 32.38 41.65

CodeLlama-7B 39.93 60.80 31.12 37.82 42.42 33.50 41.40 37.45 39.94

OpenLLaMA-v2-7B 43.69 72.20 41.29 35.54 48.18 15.32 12.69 28.01 38.10

LLaMA2-7B 53.07 77.74 43.80 38.98 53.39 13.05 20.09 16.57 34.98

LLaMA-7B 50.94 77.80 35.67 34.34 49.69 10.61 17.04 13.83 31.76

Falcon-7B 47.87 78.13 27.79 34.26 47.01 9.42 13.39 11.41 29.21

StarCoder-15B – – – – – 33.63 43.28 38.46 –

Table 5: Evaluation comparisons among a few notable code and language models. The last column is
the average of the language task average and the code task average. CRYSTALCODER strikes a good
balance between both language and code tasks.
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Figure 7: Each row corresponds to the distribution of memorization scores of a checkpoint. We
annotate the percentage of score = 1 (k-extractible) for clearer demonstration.

Figure 8: Memorization score on data
chunk for each checkpoint. The marked
spots indicate the latest chunk seen by
that checkpoint. The part on right of
each mark indicates unseen data.

(a) Memorization score (b) k-extractible

Figure 9: The correlation of sequences in terms of mem-
orization score and k-extractible between each check-
points

4.3 ANALYSIS360

Prior work such as Pythia [16] has shown that an insightful study can be done by analyzing the
intermediate checkpoints of a model. We hope LLM360 can also provide the community useful
resources for both reference and research purposes. To this end, we release the initial version of the
ANALYSIS360 project, an organized repositories that analyze the model behavior on various aspects,
including model characteristics and downstream evaluation results.

As an example of the analysis that can be performed over the set of model checkpoints, we conduct
an initial study on memorization in LLMs. Recent work [45, 46] shows that LLMs may memorize
a significant part of their training data, which can be extracted with appropriate prompting. Such
memorization not only raises privacy concerns in leaking private training data, but also downgrades
the performance of LLMs if the training data contains unintended duplicates or peculiarities. As we
release all checkpoints and data, we can conduct a comprehensive analysis of memorization across
the whole stage of training.

We adopt the memorization score introduced in [12], indicating the accuracy of tokens in the
continuation of length l with a prompt of length k,

score(k, l) =
1

l

l∑
i

1[Sk+i = Gk+i],

where S0:k+l is the sequence from training data, while Gk:k+l is the generated sequence with prompt
S0:k. A memorized or k-extractible [45] sequence has a memorization score of 1. Following [12, 16],
we conduct our experiments with k = l = 32. We sampled 1000 sequence from each of the 360 data
chunks, and use the first 64 tokens of each sequence to conduct the following experiments.

We show the distribution of memorization scores for 10 selected checkpoints in Figure 7, and
additionally annotate the percentage of score = 1. For every checkpoint, we only include the data
chunks it has already been trained on. From the result, we learn that 1) More than 1% of the sequences
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are 32-extractible from AMBER; 2) AMBER can memorize more sequences with the training going;
3) The spike at score = 1 indicates that AMBER can memorize a much larger number of tokens than
our preset threshold 32 (consistent with prior work [46, 12]).

We group the data chunks according to the selected checkpoints, and plot the memorization score on
each data chunk group for each checkpoint in Figure 8. We find that 1) AMBER checkpoints memorize
the latest seen data much more than previous data; 2) For each data chunk, the memorization score
drops a bit with additional training, but keeps increasing afterwards.

We show the correlation between sequences in terms of memorization score or k-extractible in
Figure 9. We witness a strong correlation between the checkpoints.

5 Summary and Take-home Messages

In this section, we summarize the observations and a few take-home messages from our pre-training of
AMBER and CRYSTALCODER, our initial modeling efforts in the LLM360 series. We understand that
pre-training is a computationally daunting task that many academic labs or small organizations cannot
afford to conduct. We hope that LLM360 can provide comprehensive knowledge, allowing users to
understand what happens during LLM pre-training (e.g., loss curve behaviors, how the evaluation
metrics emerge, etc.) without the need to do so themselves. We also provide some potential use cases
showing how researchers and developers can use LLM360 for their own projects.

Take-home Messages Below we list a few of the lessons learned during our initial model training.

• In the pre-training of AMBER, NaN losses were periodically observed, which may have
been caused by certain random states, the training precision, or data quality issues. Some
solutions include switching to a different random seed or skipping those data chunks. We
notice some “misbehaved” data chunks can cause NaN loss regardless of when they are
trained. In a preliminary experiment, we move the “misbehaved” data chunks to the end of
the training but still observe NaN losses.

• In the pre-training of CRYSTALCODER and our subsequent LLM pre-training efforts, we
observed that a hybrid and carefully tuned parallelism strategy—combining data, tensor-
model, and pipeline (also referred to as 3D) parallelism strategies [29]—achieves better
system throughput than FSDP, especially in distributed clusters with limited intra-node
bandwidth.

• Data cleaning (and/or data quality filtering), along with data mixing ratios, are crucial aspects
of LLM pre-training, as is the scheduling for various pre-training data categories (e.g.,
CommonCrawl, Books, StarCoder, etc.). In AMBER pre-training, we attempted to adhere as
closely as possible to the hyperparameters used in LLaMA; however, our performance still
lags significantly behind LLaMA’s. A key omission in LLaMA’s technical report is a detailed
description of their exact pre-training dataset. Our carefully crafted CRYSTALCODER pre-
training dataset, which mixes English and coding data, achieves competitive performance
with LLaMA on both the Open LLM Leaderboard and Code Evaluation benchmarks.
We, along with the entire LLM open-source community, are diligently exploring the best
approaches for data cleaning, data quality filtering, and determining optimal data mixing
ratios, a pioneering effort exemplified by the DoReMi method [15].

Potential Use Cases of LLM360 We describe a few potential use cases of LLM360 below.

• One can conduct experimental studies at any stage of model training. As previously
mentioned, the optimal data mixing ratio remains a significant open problem in LLM
pre-training. However, it is nearly impossible to verify a specific mixing ratio by conducting
full LLM pre-training. A more feasible approach is to adjust the data mixing ratios on the fly,
i.e., starting from an intermediate checkpoint, and either increasing or decreasing a specific
data ratio from a particular category, e.g., increasing the data weight in Wikipedia.

• For building domain-specific LLMs (e.g., medical, finance, law, etc.), one may not necessar-
ily want to start from the last pre-trained LLM checkpoint (which would make it more akin
to fine-tuning). Instead, one can always pick one of the LLM360 checkpoints (e.g., from
50% of the pre-training stage) and resume the pre-training to obtain a domain-specific LLM.
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• A lot of algorithmic approximation frameworks for efficient training require partially trained
model weights [47, 48]. LLM 360 provides perfect model initializations for those methods.

LLM360 and Responsible Usage Given the wide-ranging applicability and high performance of
LLMs, applications powered by them have the potential to deeply influence various aspects of life.
Consequently, it becomes essential for all parties involved in the chain of production of LLMs to
carefully manage the potential impact and risks associated with them. All stakeholders need to be
informed of these implications and take necessary actions accordingly.

We believe the transparent nature of the LLM360 initiative can help make the potential risks known
to stakeholders. As one example, many risks associated with LLMs are related to certain forms of
biases [49], such as the risk of social stereotypes, discrimination and exclusion, and the risk of under-
representing certain languages or domains. By inspecting the exact training data and bias analysis
(e.g. BOLD [50]) in ANALYSIS360, stakeholders can have a thorough review of these risks before
deploying the models. LLM360 can also help with risk mitigation. The project shares reproducible
traces and exact data during LLM training, providing a reusable environment for researchers to
conduct experiments to design better guardrails to contain potential risks.

We understand the importance of controlling the risk of LLMs and we are committed to further
developing the LLM360 framework to foster responsible usage of LLMs. We would like invite the
community to work with us, by sharing research results or by simply providing feedback.

6 Conclusion and Future Work

In this paper, we introduce LLM360, an initiative for comprehensive and fully open-sourced LLMs.
Along with the first release of LLM360, we released two 7B LLMs: AMBER (an English general-
purpose LLM) and CRYSTALCODER (an LLM pre-trained specifically for code generation). In terms
of artifacts, we released pre-training code, configurations, hyperparameters, intermediate model
checkpoints, optimizer states, as well as the data sequence and data processing code. Our vision is to
significantly advance and promote transparency within the open-source LLM pre-training community.

For future work, we are conducting a more detailed analysis on AMBER and CRYSTALCODER’s base
models as well as their fine-tuned models. Detailed results will be released and discussed in their
respective technical reports. Our team is also pre-training a much larger LLM, which will be fully
released as soon as the pre-training is complete. Additionally, we will explore the optimal ratios for
mixing different subsets in the pre-training datasets.
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